p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C25.55C22, C24.382C23, C23.569C24, C22.3432+ 1+4, C2.33D42, (C2×D4)⋊12D4, C22⋊C4⋊8D4, C23.57(C2×D4), C23⋊2D4⋊32C2, (C23×C4)⋊24C22, (C2×C42)⋊27C22, (C22×D4)⋊11C22, C23.10D4⋊69C2, C23.23D4⋊76C2, C2.36(C23⋊3D4), (C22×C4).174C23, C22.378(C22×D4), C2.C42⋊33C22, C24.C22⋊114C2, C2.7(C22.54C24), C2.51(C22.29C24), (C2×C4⋊1D4)⋊9C2, (C2×C4).83(C2×D4), (C2×C4⋊D4)⋊28C2, (C2×C4⋊C4)⋊29C22, (C2×C22≀C2)⋊12C2, (C2×C22⋊C4)⋊26C22, SmallGroup(128,1401)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.569C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=g2=1, d2=a, ab=ba, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >
Subgroups: 1156 in 466 conjugacy classes, 112 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C4⋊1D4, C23×C4, C22×D4, C22×D4, C25, C23.23D4, C24.C22, C23⋊2D4, C23.10D4, C2×C22≀C2, C2×C22≀C2, C2×C4⋊D4, C2×C4⋊1D4, C23.569C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C23⋊3D4, C22.29C24, D42, C22.54C24, C23.569C24
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 9)(2 10)(3 11)(4 12)(5 23)(6 24)(7 21)(8 22)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 29)(2 30)(3 31)(4 32)(5 28)(6 25)(7 26)(8 27)(9 20)(10 17)(11 18)(12 19)(13 24)(14 21)(15 22)(16 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 25)(2 28)(3 27)(4 26)(5 30)(6 29)(7 32)(8 31)(9 13)(10 16)(11 15)(12 14)(17 23)(18 22)(19 21)(20 24)
(1 20)(2 30)(3 18)(4 32)(6 24)(8 22)(9 29)(10 17)(11 31)(12 19)(13 25)(15 27)
(1 29)(2 19)(3 31)(4 17)(5 16)(6 27)(7 14)(8 25)(9 20)(10 32)(11 18)(12 30)(13 22)(15 24)(21 26)(23 28)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,9)(2,10)(3,11)(4,12)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,29)(2,30)(3,31)(4,32)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,25)(2,28)(3,27)(4,26)(5,30)(6,29)(7,32)(8,31)(9,13)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(20,24), (1,20)(2,30)(3,18)(4,32)(6,24)(8,22)(9,29)(10,17)(11,31)(12,19)(13,25)(15,27), (1,29)(2,19)(3,31)(4,17)(5,16)(6,27)(7,14)(8,25)(9,20)(10,32)(11,18)(12,30)(13,22)(15,24)(21,26)(23,28)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,9)(2,10)(3,11)(4,12)(5,23)(6,24)(7,21)(8,22)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,29)(2,30)(3,31)(4,32)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,25)(2,28)(3,27)(4,26)(5,30)(6,29)(7,32)(8,31)(9,13)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(20,24), (1,20)(2,30)(3,18)(4,32)(6,24)(8,22)(9,29)(10,17)(11,31)(12,19)(13,25)(15,27), (1,29)(2,19)(3,31)(4,17)(5,16)(6,27)(7,14)(8,25)(9,20)(10,32)(11,18)(12,30)(13,22)(15,24)(21,26)(23,28) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,9),(2,10),(3,11),(4,12),(5,23),(6,24),(7,21),(8,22),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,29),(2,30),(3,31),(4,32),(5,28),(6,25),(7,26),(8,27),(9,20),(10,17),(11,18),(12,19),(13,24),(14,21),(15,22),(16,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,25),(2,28),(3,27),(4,26),(5,30),(6,29),(7,32),(8,31),(9,13),(10,16),(11,15),(12,14),(17,23),(18,22),(19,21),(20,24)], [(1,20),(2,30),(3,18),(4,32),(6,24),(8,22),(9,29),(10,17),(11,31),(12,19),(13,25),(15,27)], [(1,29),(2,19),(3,31),(4,17),(5,16),(6,27),(7,14),(8,25),(9,20),(10,32),(11,18),(12,30),(13,22),(15,24),(21,26),(23,28)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 4A | ··· | 4J | 4K | 4L | 4M | 4N |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | 2+ 1+4 |
kernel | C23.569C24 | C23.23D4 | C24.C22 | C23⋊2D4 | C23.10D4 | C2×C22≀C2 | C2×C4⋊D4 | C2×C4⋊1D4 | C22⋊C4 | C2×D4 | C22 |
# reps | 1 | 1 | 2 | 4 | 2 | 3 | 2 | 1 | 8 | 4 | 4 |
Matrix representation of C23.569C24 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1] >;
C23.569C24 in GAP, Magma, Sage, TeX
C_2^3._{569}C_2^4
% in TeX
G:=Group("C2^3.569C2^4");
// GroupNames label
G:=SmallGroup(128,1401);
// by ID
G=gap.SmallGroup(128,1401);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=g^2=1,d^2=a,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations